Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.315
Filtrar
1.
Mol Pharm ; 21(4): 2043-2057, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38471114

RESUMO

The capillarization of hepatic sinusoids resulting from the activation of hepatic stellate cells poses a significant challenge, impeding the effective delivery of therapeutic agents to the Disse space for liver fibrosis treatment. Therefore, overcoming these barriers and achieving efficient drug delivery to activated hepatic stellate cells (aHSCs) are pressing challenge. In this study, we developed a synergistic sequential drug delivery approach utilizing neutrophil membrane hybrid liposome@atorvastatin/amlisentan (NCM@AtAm) and vitamin A-neutrophil membrane hybrid liposome @albumin (VNCM@Bai) nanoparticles (NPs) to breach the capillary barrier for targeted HSC cell delivery. Initially, NCM@AtAm NPs were successfully directed to the site of hepatic fibrosis through neutrophil-mediated inflammatory targeting, resulting in the normalization of liver sinusoidal endothelial cells (LSECs) and restoration of fenestrations under the combined influence of At and Am. Elevated tissue levels of the p-Akt protein and endothelial nitric oxide synthase (eNOS) indicated the normalization of LSECs following treatment with At and Am. Subsequently, VNCM@Bai NPs traversed the restored LSEC fenestrations to access the Disse space, facilitating the delivery of Bai into aHSCs under vitamin A guidance. Lastly, both in vitro and in vivo results demonstrated the efficacy of Bai in inhibiting HSC cell activation by modulating the PPAR γ/TGF-ß1 and STAT1/Smad7 signaling pathways, thereby effectively treating liver fibrosis. Overall, our designed synergistic sequential delivery system effectively overcomes the barrier imposed by LSECs, offering a promising therapeutic strategy for liver fibrosis treatment in clinical settings.


Assuntos
Células Endoteliais , Células Estreladas do Fígado , Humanos , Células Endoteliais/metabolismo , Biônica , Capilares/metabolismo , Lipossomos/metabolismo , Neutrófilos/metabolismo , Vitamina A/metabolismo , Vitamina A/farmacologia , Fígado/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo
2.
Methods Mol Biol ; 2761: 27-38, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427226

RESUMO

The integrity of the blood-brain barrier (BBB) is essential for the normal functioning of the central nervous system (CNS). Isolated brain capillaries are essential for analyzing changes in protein and gene expression at the BBB under physiological and pathological conditions. The standard methods for isolating brain capillaries require the use of at least one or more mouse brains in order to obtain sufficient quantity and purity of brain capillaries. Here, we describe an optimized protocol for isolating and purifying capillaries from tiny amounts of mouse cerebral cortex using manual homogenization, density gradient centrifugation, and filtration while preserving the structural integrity and functional activity of microvessel fragments. Western blotting showed that proteins expressed at the BBB were enriched in mouse brain capillaries isolated by the optimized method compared to cerebral cortex protein homogenates. This approach can be used for the analysis of a variety of rare mouse genetic models and can also help the investigators to understand regional differences in susceptibility to pathological phenomena such as ischemia and traumatic brain injury. This will allow the investigators to better understand the physiology and pathology of the BBB.


Assuntos
Encéfalo , Capilares , Camundongos , Animais , Capilares/metabolismo , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Proteínas/metabolismo , Transporte Biológico
3.
Mol Med Rep ; 29(4)2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38426545

RESUMO

Liver sinusoidal endothelial cells (LSECs) have an important role in hepatic ischemia­reperfusion injury (I/R), but the specific molecular mechanism of action is unknown. LSEC proliferation is regulated and fenestration is maintained via the Sentrin/SUMO­specific protease 1 (SENP1)/hypoxia­inducible factor­1α (HIF­1α) signaling axis under hypoxic conditions. In the present study, a hypoxia­reoxygenation (H­R) injury model was established using mouse LSECs to explore the relationship between SENP1 and H­R injury in vitro, and the specific underlying mechanism was identified, revealing new targets for the clinical attenuation of hepatic I/R injury. Following the culture of LSECs under H­R conditions, it was demonstrated that the expression of SENP1 was upregulated by reverse transcription­quantitative polymerase chain reaction and western blotting (WB). In addition, scanning electron microscopy indicated that fenestrae damage was increased, a Cell Counting Kit­8 assay demonstrated that the proliferation of cells was impaired and flow cytometry showed that apoptosis was increased. After silencing SENP1 expression with short interfering RNA, the proliferation activity of LSECs decreased, the fenestrae damage increased, the apoptosis rate increased and the expression levels of SENP1, HIF­1α, heme oxygenase and Bcl­2 were downregulated (as demonstrated by WB), while the expression levels of apoptosis­related proteins, cleaved­caspase­3 and Bax, were upregulated. Enzyme­linked immunosorbent assay detection showed that the level of vascular endothelial growth factor in the supernatant decreased and the level of IL­6 and TNF­α increased. Following the administration of an HIF­1α signaling pathway agonist, the situation was reversed. These results therefore suggested that SENP1 attenuated the reduction in proliferation, apoptosis and fenestration of LSECs observed following H­R injury through the HIF­1α signaling pathway. In conclusion, SENP1 may attenuate H­R injury in LSECs in a HIF­1α signaling pathway­dependent manner.


Assuntos
Células Endoteliais , Peptídeo Hidrolases , Animais , Camundongos , Capilares/metabolismo , Hipóxia Celular , Células Endoteliais/metabolismo , Hipóxia/metabolismo , Fígado/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Front Immunol ; 15: 1308915, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348045

RESUMO

Background: Sepsis-induced acute lung injury (ALI) poses a significant threat to human health. Endothelial cells, especially pulmonary capillaries, are the primary barriers against sepsis in the lungs. Therefore, investigating endothelial cell function is essential to understand the pathophysiological processes of sepsis-induced ALI. Methods: We downloaded single-cell RNA-seq expression data from GEO with accession number GSE207651. The mice underwent cecal ligation and puncture (CLP) surgery, and lung tissue samples were collected at 0, 24, and 48 h. The cells were annotated using the CellMarker database and FindAllMarkers functions. GO enrichment analyses were performed using the Metascape software. Gene set enrichment Analysis (GSEA) and variation Analysis (GSVA) were performed to identify differential signaling pathways. Differential expression genes were collected with the "FindMarkers" function. The R package AUCell was used to score individual cells for pathway activities. The Cellchat package was used to explore intracellular communication. Results: Granulocytes increased significantly as the duration of endotoxemia increased. However, the number of T cells, NK cells, and B cells declined. Pulmonary capillary cells were grouped into three sub-clusters. Capillary-3 cells were enriched in the sham group, but declined sharply in the CLP.24 group. Capillary-1 cells peaked in the CLP.24 group, while Capillary-2 cells were enriched in the CLP.48 group. Furthermore, we found that Cd74+ Capillary-3 cells mainly participated in immune interactions. Plat+ Capillary-1 and Clec1a+ Capillary-2 are involved in various physiological processes. Regarding cell-cell interactions, Plat+ Capillary-1 plays the most critical role in granulocyte adherence to capillaries during ALI. Cd74+ Capillary cells expressing high levels of major histocompatibility complex (MHC) and mainly interacted with Cd8a+ T cells in the sham group. Conclusion: Plat+ capillaries are involved in the innate immune response through their interaction with neutrophils via ICAM-1 adhesion during endotoxemia, while Cd74+ capillaries epxressed high level of MHC proteins play a role in adaptive immune response through their interaction with T cells. However, it remains unclear whether the function of Cd74+ capillaries leans towards immunity or tolerance, and further studies are needed to confirm this.


Assuntos
Lesão Pulmonar Aguda , Endotoxemia , Sepse , Camundongos , Animais , Humanos , RNA/metabolismo , Capilares/metabolismo , Células Endoteliais/metabolismo , Endotoxemia/metabolismo , Pulmão/metabolismo , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Sepse/complicações , Sepse/genética
5.
BMC Pediatr ; 24(1): 68, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245695

RESUMO

BACKGROUNDS: In children with sepsis, circulatory shock and multi-organ failure remain major contributors to mortality. Prolonged capillary refill time (PCRT) is a clinical tool associated with disease severity and tissue hypoperfusion. Microcirculation assessment with videomicroscopy represents a promising candidate for assessing and improving hemodynamic management strategies in children with sepsis. Particularly when there is loss of coherence between the macro and microcirculation (hemodynamic incoherence). We sought to evaluate the association between PCRT and microcirculation changes in sepsis. METHODS: This was a prospective cohort study in children hospitalized with sepsis. Microcirculation was measured using sublingual video microscopy (capillary density and flow and perfused boundary region [PBR]-a parameter inversely proportional to vascular endothelial glycocalyx thickness), phalangeal tissue perfusion, and endothelial activation and glycocalyx injury biomarkers. The primary outcome was the association between PCRT and microcirculation changes. RESULTS: A total of 132 children with sepsis were included, with a median age of two years (IQR 0.6-12.2). PCRT was associated with increased glycocalyx degradation (PBR 2.21 vs. 2.08 microns; aOR 2.65, 95% CI 1.09-6.34; p = 0.02) and fewer 4-6 micron capillaries recruited (p = 0.03), with no changes in the percentage of capillary blood volume (p = 0.13). Patients with hemodynamic incoherence had more PBR abnormalities (78.4% vs. 60.8%; aOR 2.58, 95% CI 1.06-6.29; p = 0.03) and the persistence of these abnormalities after six hours was associated with higher mortality (16.5% vs. 6.1%; p < 0.01). Children with an elevated arterio-venous CO2 difference (DCO2) had an abnormal PBR (aOR 1.13, 95% CI 1.01-1.26; p = 0.03) and a lower density of small capillaries (p < 0.05). Prolonged capillary refill time predicted an abnormal PBR (AUROC 0.81, 95% CI 0.64-0.98; p = 0.03) and relative percentage of blood in the capillaries (AUROC 0.82, 95% CI 0.58-1.00; p = 0.03) on admission. A normal CRT at 24 h predicted a shorter hospital stay (aOR 0.96, 95% CI 0.94-0.99; p < 0.05). CONCLUSIONS: We found an association between PCRT and microcirculation changes in children with sepsis. These patients had fewer small capillaries recruited and more endothelial glycocalyx degradation. This leads to nonperfused capillaries, affecting oxygen delivery to the tissues. These disorders were associated with hemodynamic incoherence and worse clinical outcomes when the CRT continued to be abnormal 24 h after admission.


Assuntos
Sepse , Criança , Humanos , Lactente , Pré-Escolar , Microcirculação/fisiologia , Estudos Prospectivos , Capilares/metabolismo , Biomarcadores/metabolismo
6.
Neurotoxicol Teratol ; 101: 107320, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38199312

RESUMO

INTRODUCTION: Methylmercury (MeHg) is an environmental contaminant that is of particular concern in Northern Arctic Canadian populations. Specifically, organic mercury compounds such as MeHg are potent toxicants that affect multiple bodily systems including the nervous system. Developmental exposure to MeHg is a major concern, as the developing fetus and neonate are thought to be especially vulnerable to the toxic effects of MeHg. The objective of this study was to examine developmental exposure to low doses of MeHg and effects upon the adult central nervous system (CNS). The doses of MeHg chosen were scaled to be proportional to the concentrations of MeHg that have been reported in human maternal blood samples in Northern Arctic Canadian populations. METHOD: Offspring were exposed to MeHg maternally where pregnant Sprague Dawley rats were fed cookies that contained MeHg or vehicle (vehicle corn oil; MeHg 0.02 mg/kg/body weight or 2.0 mg/kg/body weight) daily, throughout gestation (21 days) and lactation (21 days). Offspring were not exposed to MeHg after the lactation period and were euthanized on postnatal day 450. Brains were extracted, fixed, frozen, and sectioned for immunohistochemical analysis. A battery of markers of brain structure and function were selected including neuronal GABAergic enzymatic marker glutamic acid decarboxylase-67 (GAD67), apoptotic/necrotic marker cleaved caspase-3 (CC3), catecholamine marker tyrosine hydroxylase (TH), immune inflammatory marker microglia (Cd11b), endothelial cell marker rat endothelial cell antigen-1 (RECA-1), doublecortin (DCX), Bergmann glia (glial fibrillary acidic protein (GFAP)), and general nucleic acid and cellular stains Hoechst, and cresyl violet, respectively. Oxidative stress marker lipofuscin (autofluorescence) was also assessed. Both male and female offspring were included in analysis. Two-way analysis of variance (ANOVA) was utilized where sex and treatment were considered as between-subject factors (p* <0.05). ImageJ was used to assess immunohistochemical results. RESULTS: In comparison with controls, adult rat offspring exposed to both doses of MeHg were observed to have (1) increased GAD67 in the cerebellum; (2) decreased lipofuscin in the locus coeruleus; and (3) decreased GAD67 in the anterior CA1 region. Furthermore, in the substantia nigra and periaqueductal gray, adult male offspring consistently had a larger endothelial cell and capillary perimeter in comparison to females. The maternal high dose of MeHg influenced RECA-1 immunoreactivity in both the substantia nigra and periaqueductal gray of adult rat offspring, where the latter neuronal region also showed statistically significant decreases in RECA-1 immunoreactivity at the maternal low dose exposure level. Lastly, males exposed to high doses of MeHg during development exhibited a statistically significant increase in the perimeter of endothelial cells and capillaries (RECA-1) in the cerebellum, in comparison to male controls. CONCLUSION: Findings suggest that in utero and early postnatal exposure to MeHg at environmentally relevant doses leads to long-lasting and selective changes in the CNS. Exposure to MeHg at low doses may affect GABAergic homeostasis and vascular integrity of the CNS. Such changes may contribute to neurological disturbances in learning, cognition, and memory that have been reported in epidemiological studies.


Assuntos
Compostos de Metilmercúrio , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Ratos , Animais , Masculino , Feminino , Humanos , Compostos de Metilmercúrio/toxicidade , Ratos Sprague-Dawley , Glutamato Descarboxilase/metabolismo , Glutamato Descarboxilase/farmacologia , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Capilares/metabolismo , Células Endoteliais/metabolismo , Lipofuscina/metabolismo , Lipofuscina/farmacologia , Canadá , Cerebelo , Mesencéfalo/metabolismo , Peso Corporal
7.
Appl Biochem Biotechnol ; 196(3): 1241-1254, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37382792

RESUMO

The incidence of diabetic patients with non-alcoholic fatty liver disease (NAFLD) is continuously increasing worldwide. However, the specific mechanisms of NAFLD patients with diabetes are still not clear. Recent studies have indicated that integrins play an important role in NAFLD. In this study, we considered the relationship between integrin αv (IGTAV)/FAK pathway and sinusoidal capillarization. We investigated the difference between the expression of IGTAV, laminin (LN), focal adhesion kinase (FAK), and phosphor-FAK protein in human liver sinusoidal endothelial cells (HLSECs) to explore the specific mechanisms of the diseases of NAFLD with diabetes under high glucose. We cultured and identified the HLSECs and constructed the recombinant lentivirus vector with IGTAV shRNA by quantitative real-time PCR (qRT-PCR) to silence the IGTAV gene. Cells were divided into groups of 25 mmol/L glucose and 25 mmol/L mannitol. We measured the protein levels of IGTAV, LN, FAK, and phosphor-FAK by western blot at 2 h, 6 h, and 12 h before and after IGTAV gene silencing. The lentivirus vector was successfully constructed with IGTAV shRNA. The HLSECs under high glucose were observed by scanning electron microscope. SPSS19.0 was used for statistical analysis. High glucose significantly increased the expression of IGTAV, LN, and phosphor-FAK protein in HLSECs; the shRNA IGTAV could effectively inhibit the expression of phosphor-FAK and LN at 2 h and 6 h. Inhibition of the phosphor-FAK could effectively decrease the expression of LN in HLSECs at 2 h and 6 h under high glucose. Inhibition of IGTAV gene of HLSECs under high glucose could improve hepatic sinus capillarization. Inhibition of IGTAV and phosphor-FAK decreased the expression of LN. High glucose led to hepatic sinus capillarization via IGTAV/ FAK pathway.


Assuntos
Diabetes Mellitus , Hepatopatia Gordurosa não Alcoólica , Humanos , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Integrina alfaV/metabolismo , Células Endoteliais , Capilares/metabolismo , Glucose/metabolismo , RNA Interferente Pequeno
8.
J Cereb Blood Flow Metab ; 44(2): 155-168, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37728791

RESUMO

Hypoglycemia is a serious complication of insulin treatment of diabetes that can lead to coma and death. Neurovascular coupling, which mediates increased local blood flow in response to neuronal activity, increases glucose availability to active neurons. This mechanism could be essential for neuronal health during hypoglycemia, when total glucose supplies are low. Previous studies suggest, however, that neurovascular coupling (a transient blood flow increase in response to an increase in neuronal activity) may be reduced during hypoglycemia. Such a reduction in blood flow increase would exacerbate the effects of hypoglycemia, depriving active neurons of glucose. We have reexamined the effects of hypoglycemia on neurovascular coupling by simultaneously monitoring neuronal and vascular responses to whisker stimulation in the awake mouse somatosensory cortex. We find that neurovascular coupling at both penetrating arterioles and at 2nd order capillaries did not change significantly during insulin-induced hypoglycemia compared to euglycemia. In addition, we show that the basal diameter of both arterioles and capillaries increases during hypoglycemia (10.3 and 9.7% increases, respectively). Our results demonstrate that both neurovascular coupling and basal increases in vessel diameter are active mechanisms which help to maintain an adequate supply of glucose to the brain during hypoglycemia.


Assuntos
Hipoglicemia , Insulinas , Acoplamento Neurovascular , Camundongos , Animais , Acoplamento Neurovascular/fisiologia , Arteríolas/metabolismo , Capilares/metabolismo , Circulação Cerebrovascular/fisiologia , Vibrissas/fisiologia , Hipoglicemia/induzido quimicamente , Hipoglicemia/metabolismo , Glucose/metabolismo , Insulinas/metabolismo , Insulinas/farmacologia
9.
Fluids Barriers CNS ; 20(1): 85, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993886

RESUMO

BACKGROUND: Parenchymal accumulation of beta-amyloid (Aß) characterizes Alzheimer's disease (AD). Aß homeostasis is maintained by two ATP-binding cassette (ABC) transporters (ABCC1 and ABCB1) mediating efflux, and the receptor for advanced glycation end products (RAGE) mediating influx across the blood-brain barrier (BBB). Altered transporter levels and disruption of tight junctions (TJ) were linked to AD. However, Aß transport and the activity of ABCC1, ABCB1 and RAGE as well as the functionality of TJ in AD are unclear. METHODS: ISMICAP, a BBB model involving microperfusion of capillaries, was used to assess BBB properties in acute cortical brain slices from Tg2576 mice compared to wild-type (WT) controls using two-photon microscopy. TJ integrity was tested by vascularly perfusing biocytin-tetramethylrhodamine (TMR) and quantifying its extravascular diffusion as well as the diffusion of FM1-43 from luminal to abluminal membranes of endothelial cells (ECs). To assess ABCC1 and ABCB1 activity, calcein-AM was perfused, which is converted to fluorescent calcein in ECs and gets actively extruded by both transporters. To probe which transporter is involved, probenecid or Elacridar were applied, individually or combined, to block ABCC1 and ABCB1, respectively. To assess RAGE activity, the binding of 5-FAM-tagged Aß by ECs was quantified with or without applying FPS-ZM1, a RAGE antagonist. RESULTS: In Tg2576 mouse brain, extravascular TMR was 1.8-fold that in WT mice, indicating increased paracellular leakage. FM1-43 staining of abluminal membranes in Tg2576 capillaries was 1.7-fold that in WT mice, indicating reduced TJ integrity in AD. While calcein was undetectable in WT mice, its accumulation was significant in Tg2576 mice, suggesting lower calcein extrusion in AD. Incubation with probenecid or Elacridar in WT mice resulted in a marked calcein accumulation, yet probenecid alone had no effect in Tg2576 mice, implying the absence of probenecid-sensitive ABC transporters. In WT mice, Aß accumulated along the luminal membranes, which was undetectable after applying FPS-ZM1. In contrast, marginal Aß fluorescence was observed in Tg2576 vessels, and FPS-ZM1 was without effect, suggesting reduced RAGE binding activity. CONCLUSIONS: Disrupted TJ integrity, reduced ABCC1 functionality and decreased RAGE binding were identified as BBB alterations in Tg2576 mice, with the latter finding challenging the current concepts. Our results suggest to manage AD by including modulation of TJ proteins and Aß-RAGE binding.


Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Capilares/metabolismo , Células Endoteliais/metabolismo , Probenecid/metabolismo , Homeostase , Perfusão
10.
Ann Clin Lab Sci ; 53(5): 712-718, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37945017

RESUMO

OBJECTIVE: It remains unclear if C4d staining is related to any peritubular and glomerular injury during antibody mediated rejection (ABMR). The goal of this study was to determine if myeloperoxidase (MPO) staining can highlight endothelial injury in peritubular capillaries (PTC) and glomeruli. METHODS: The study included 12 native negative controls, 19 transplant biopsies with borderline changes (BC) as transplant controls, and one group of renal transplant biopsies with ABMR as the study group (acute/chronic, n=22). All three groups were stained for MPO immunohistochemically, and the MPO expressions in the endothelium of PTC and glomeruli were evaluated and correlated with serum creatinine (SCr). In addition, the ultrastructural layers of the PTC (an index for chronic allograft rejection) were correlated with MPO indices in PTC. RESULTS: The negative control group and the transplant controls showed no MPO expression in the endothelium of glomeruli and PTC. However, in the biopsies with ABMR, there were MPO-positive stains in the endothelial cells of glomeruli (15/21 cases, 71.4 %) and PTC (16/22 cases, 72.7 %). There were significant correlations between the peritubular MPO staining versus SCr (r=0.355 and p=0.0106) and glomerular MPO staining versus SCr (r=0.365 and p=0.0092). Furthermore, the layers of PTC by electron microscopy were significantly correlated with MPO scores in PTC (r=0.696, p=0.0001). CONCLUSION: Our data suggest that the MPO-positive endothelial injuries are most likely the cause leading to renal graft dysfunction following ABMR.


Assuntos
Capilares , Nefropatias , Humanos , Capilares/metabolismo , Células Endoteliais/metabolismo , Peroxidase/metabolismo , Complemento C4b/metabolismo , Nefropatias/metabolismo , Anticorpos/metabolismo , Endotélio/metabolismo , Endotélio/patologia , Coloração e Rotulagem , Rejeição de Enxerto/etiologia , Fragmentos de Peptídeos/metabolismo
11.
Proc Natl Acad Sci U S A ; 120(44): e2313825120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37871217

RESUMO

Lipoprotein lipase (LPL), the enzyme that carries out the lipolytic processing of triglyceride-rich lipoproteins (TRLs), is synthesized by adipocytes and myocytes and secreted into the interstitial spaces. The LPL is then bound by GPIHBP1, a GPI-anchored protein of endothelial cells (ECs), and transported across ECs to the capillary lumen. The assumption has been that the LPL that is moved into capillaries remains attached to GPIHBP1 and that GPIHBP1 serves as a platform for TRL processing. In the current studies, we examined the validity of that assumption. We found that an LPL-specific monoclonal antibody (mAb), 88B8, which lacks the ability to detect GPIHBP1-bound LPL, binds avidly to LPL within capillaries. We further demonstrated, by confocal microscopy, immunogold electron microscopy, and nanoscale secondary ion mass spectrometry analyses, that the LPL detected by mAb 88B8 is located within the EC glycocalyx, distant from the GPIHBP1 on the EC plasma membrane. The LPL within the glycocalyx mediates the margination of TRLs along capillaries and is active in TRL processing, resulting in the delivery of lipoprotein-derived lipids to immediately adjacent parenchymal cells. Thus, the LPL that GPIHBP1 transports into capillaries can detach and move into the EC glycocalyx, where it functions in the intravascular processing of TRLs.


Assuntos
Lipase Lipoproteica , Receptores de Lipoproteínas , Anticorpos Monoclonais/metabolismo , Capilares/metabolismo , Células Endoteliais/metabolismo , Glicocálix/metabolismo , Lipase Lipoproteica/metabolismo , Lipoproteínas/metabolismo , Receptores de Lipoproteínas/metabolismo , Triglicerídeos/metabolismo , Humanos , Animais
12.
J Clin Invest ; 133(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37824203

RESUMO

Why apolipoprotein AV (APOA5) deficiency causes hypertriglyceridemia has remained unclear, but we have suspected that the underlying cause is reduced amounts of lipoprotein lipase (LPL) in capillaries. By routine immunohistochemistry, we observed reduced LPL staining of heart and brown adipose tissue (BAT) capillaries in Apoa5-/- mice. Also, after an intravenous injection of LPL-, CD31-, and GPIHBP1-specific mAbs, the binding of LPL Abs to heart and BAT capillaries (relative to CD31 or GPIHBP1 Abs) was reduced in Apoa5-/- mice. LPL levels in the postheparin plasma were also lower in Apoa5-/- mice. We suspected that a recent biochemical observation - that APOA5 binds to the ANGPTL3/8 complex and suppresses its capacity to inhibit LPL catalytic activity - could be related to the low intracapillary LPL levels in Apoa5-/- mice. We showed that an ANGPTL3/8-specific mAb (IBA490) and APOA5 normalized plasma triglyceride (TG) levels and intracapillary LPL levels in Apoa5-/- mice. We also showed that ANGPTL3/8 detached LPL from heparan sulfate proteoglycans and GPIHBP1 on the surface of cells and that the LPL detachment was blocked by IBA490 and APOA5. Our studies explain the hypertriglyceridemia in Apoa5-/- mice and further illuminate the molecular mechanisms that regulate plasma TG metabolism.


Assuntos
Apolipoproteína A-V , Hipertrigliceridemia , Receptores de Lipoproteínas , Animais , Camundongos , Capilares/metabolismo , Hipertrigliceridemia/genética , Hipertrigliceridemia/metabolismo , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Receptores de Lipoproteínas/genética , Receptores de Lipoproteínas/metabolismo , Triglicerídeos/sangue , Apolipoproteína A-V/genética
13.
J Stroke Cerebrovasc Dis ; 32(9): 107300, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37572602

RESUMO

BACKGROUND AND PURPOSE: Human amylin is a 37 amino-acid pancreatic peptide that forms neuro-toxic aggregates that deposit in the endothelium of brain capillaries of patients with diabetes, potentially contributing to cerebral small vessel ischemic injury. Pathogenic amylin also deposits in the capillary endothelium in other organs, including the skin. The aim of this study was to test the hypothesis that skin capillary amylin deposition correlates with cerebral small vessel amylin deposition, potentially providing a clinically useful marker of cerebral amylin deposition. METHODS: Immunohistochemistry (IHC) was performed for human amylin and collagen IV in brain and skin sections of rats (age 15-16 months) with pancreatic overexpression of amyloidogenic human amylin polypeptide (HIP rats), and control rats (Wild type; WT; rats that express non-amyloidogenic rat amylin) using antibodies binding amylin (n = 5 male and 5 female rats for each group) and antibodies binding Hypoxia inducing factor (HIF)-1α and HIF-2α (n = 3 for each group). The reactive amylin-aldehyde 4-hydroxynonenal (4-HNE) adduct was measured in skin homogenates. (n = 4 for each group) RESULTS: Brain capillaries isolated from HIP rats had higher amylin content compared to WT rats using Western blot with anti-amylin antibody (p = 0.0010). The HIF-1α and HIF-2α immunoreactivity signals in skin from HIP and WT rats were similar (p = 0.2 for HIF-1 α, and p = 0.75 for HIF-2α). Amylin-4HNE adduct formation was higher in HIP rats compared to WT rats (p = 0.0014). There was phenotypic similarity between brain and skin capillary amylin based on co-staining for human amylin and collagen IV in both HIP and WT rats. CONCLUSION: Skin and brain capillary amylin deposition are similar providing evidence that a skin biopsy might be providing a potential biomarker for diabetes-associated intracranial vasculopathy.


Assuntos
Capilares , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Ratos , Humanos , Masculino , Animais , Feminino , Lactente , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Capilares/metabolismo , Encéfalo/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Colágeno/metabolismo
14.
Am J Physiol Regul Integr Comp Physiol ; 325(3): R299-R307, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37458379

RESUMO

Hypertension augments while exercise training corrects the increased vesicle trafficking (transcytosis) across the blood-brain barrier (BBB) within preautonomic areas and the autonomic imbalance. There is no information on a possible mechanism(s) conditioning these effects. Knowing that Mfsd2a is the major transporter of docosahexaenoic acid (DHA) and that Mfsd2a knockout mice exhibited leaky BBB, we sought to identify its possible involvement in hypertension- and exercise-induced transcytosis across the BBB. Spontaneously hypertensive rats (SHR) and Wistar rats were submitted to treadmill training (T) or kept sedentary (S) for 4 wk. Resting hemodynamic/autonomic parameters were recorded in conscious chronically cannulated rats. BBB permeability within the hypothalamic paraventricular nucleus (PVN) was evaluated in anesthetized rats. Brains were harvested for Mfsd2a and caveolin-1 (an essential protein for vesicle formation) expression. SHR-S versus Wistar-S exhibited elevated arterial pressure (AP) and heart rate (HR), increased vasomotor sympathetic activity, reduced cardiac parasympathetic activity, greater pressure variability, reduced HR variability, and depressed baroreflex control. SHR-S also showed increased BBB permeability, reduced Mfsd2a, and increased caveolin-1 expression. SHR-T versus SHR-S exhibited increased Mfsd2a density, reduced caveolin-1 protein expression, and normalized PVN BBB permeability, which were accompanied by resting bradycardia, partial AP drop, reduced sympathetic and normalized cardiac parasympathetic activity, increased HR variability, and reduced pressure variability. No changes were observed in Wistar-T versus Wistar-S. Training is an efficient tool to rescue Mfsd2a expression, which by transporting DHA into the endothelial cell reduces caveolin-1 availability and vesicles' formation. Exercise-induced Mfsd2a normalization is an important mechanism to correct both BBB function and autonomic control in hypertensive subjects.


Assuntos
Hipertensão , Simportadores , Animais , Ratos , Barreira Hematoencefálica/metabolismo , Capilares/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos Endogâmicos SHR , Ratos Wistar , Simportadores/metabolismo
15.
Am J Physiol Lung Cell Mol Physiol ; 325(3): L277-L287, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37431588

RESUMO

Failure of the lung's endothelial barrier underlies lung injury, which causes the high mortality acute respiratory distress syndrome (ARDS). Multiple organ failure predisposes to the mortality, but mechanisms are poorly understood. Here, we show that mitochondrial uncoupling protein 2 (UCP2), a component of the mitochondrial inner membrane, plays a role in the barrier failure. Subsequent lung-liver cross talk mediated by neutrophil activation causes liver congestion. We intranasally instilled lipopolysaccharide (LPS). Then, we viewed the lung endothelium by real-time confocal imaging of the isolated, blood-perfused mouse lung. LPS caused alveolar-capillary transfer of reactive oxygen species and mitochondrial depolarization in lung venular capillaries. The mitochondrial depolarization was inhibited by transfection of alveolar Catalase and vascular knockdown of UCP2. LPS instillation caused lung injury as indicated by increases in bronchoalveolar lavage (BAL) protein content and extravascular lung water. LPS or Pseudomonas aeruginosa instillation also caused liver congestion, quantified by liver hemoglobin and plasma aspartate aminotransferase (AST) increases. Genetic inhibition of vascular UCP2 prevented both lung injury and liver congestion. Antibody-mediated neutrophil depletion blocked the liver responses, but not lung injury. Knockdown of lung vascular UCP2 mitigated P. aeruginosa-induced mortality. Together, these data suggest a mechanism in which bacterial pneumonia induces oxidative signaling to lung venular capillaries, known sites of inflammatory signaling in the lung microvasculature, depolarizing venular mitochondria. Successive activation of neutrophils induces liver congestion. We conclude that oxidant-induced UCP2 expression in lung venular capillaries causes a mechanistic sequence leading to liver congestion and mortality. Lung vascular UCP2 may present a therapeutic target in ARDS.NEW & NOTEWORTHY We report that mitochondrial injury in lung venular capillaries underlies barrier failure in pneumonia, and venular capillary uncoupling protein 2 (UCP2) causes neutrophil-mediated liver congestion. Using in situ imaging, we found that epithelial-endothelial transfer of H2O2 activates UCP2, depolarizing mitochondria in venular capillaries. The conceptual advance from our findings is that mitochondrial depolarization in lung capillaries mediates liver cross talk through circulating neutrophils. Pharmacologic blockade of UCP2 could be a therapeutic strategy for lung injury.


Assuntos
Lesão Pulmonar , Pneumonia Bacteriana , Síndrome do Desconforto Respiratório , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Capilares/metabolismo , Peróxido de Hidrogênio , Fígado/metabolismo , Mitocôndrias/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Lesão Pulmonar/metabolismo , Pneumonia Bacteriana/metabolismo , Proteínas Mitocondriais/metabolismo
16.
Curr Neurovasc Res ; 20(3): 334-345, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37403388

RESUMO

BACKGROUND: A protective and regulatory barrier between the blood and the brain is constituted by the blood-brain barrier (BBB), which comprises microvascular endothelial cells providing homeostatic regulation of the central nervous system (CNS). Inflammation compromises the BBB and contributes to many CNS disorders. Anti-inflammatory effects are exerted by glucocorticoids (GCs) on a variety of cells. These GCs include dexamethasone (Dex), which is used for the treatment of inflammatory diseases and recently for the treatment of COVID-19. AIM: The purpose of this study was to determine whether low or high concentrations of Dex can attenuate the inflammatory response induced by lipopolysaccharide (LPS) in the in vitro BBB model. METHODS: Brain endothelial cells (bEnd.5) were cultured and exposed to LPS (100ng/ml) and subsequently co-treated with Dex to investigate whether selected concentrations of Dex (0.1, 5, 10, 20µM) can modulate the inflammatory effects of LPS on bEnd.5 cells. Cell viability, cell toxicity, and cell proliferation were investigated, as well as the monitoring of membrane permeability (Trans Endothelial Electrical Resistance-TEER), and Enzyme-Linked Immune Assay (ELISA) kits were used to identify and quantify the presence of inflammatory cytokines (TNF-α and IL-1ß). RESULTS: Dex, at a lower dosage (0.1µM, but not higher doses), was able to attenuate the inflammatory effects of LPS on bEnd.5 cells. Lower doses of Dex (0.1µM) had no detrimental effects on bEnd.5 cells, while higher Dex doses (5-20µM) decreased bEnd.5 viability, increased bEnd.5 cell toxicity, increased bEnd.5 cell monolayer permeability, and increased proinflammatory cytokine secretion. CONCLUSION: These results indicate that treatment of brain vascular inflammation with low doses of Dex should be advocated, while higher doses promote vascular inflammation.


Assuntos
Barreira Hematoencefálica , COVID-19 , Humanos , Barreira Hematoencefálica/metabolismo , Lipopolissacarídeos/toxicidade , Células Endoteliais , Capilares/metabolismo , COVID-19/metabolismo , Tratamento Farmacológico da COVID-19 , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Citocinas/metabolismo , Glucocorticoides/farmacologia , Dexametasona/farmacologia , Dexametasona/metabolismo
17.
Bull Exp Biol Med ; 175(1): 101-105, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37335449

RESUMO

The quantitative content of HIF-1α- and HIF-2α-immunopositive brain neurons in Wistar rats was studied 1, 15, and 30 days after modeling of myocardial infarction. In rats of the control group, the immunohistochemical markers HIF-1α and HIF-2α in the prefrontal cortex of the brain were determined in few pale-colored neurons and capillaries. One day after myocardial infarction simulation, the number of HIF-1α+ neurons increased, and on day 15 it reached the maximum level: the concentration of immunopositive neurons and capillaries increased by 24.7 and 18.4%, respectively, in comparison with the control. After 30 days, the number of HIF-1α+ structures decreased, but remained above the control values. The number of neurons and capillaries positively stained for HIF-2α peaked only on day 30 of the postinfarction period.


Assuntos
Capilares , Infarto do Miocárdio , Ratos , Animais , Ratos Wistar , Capilares/metabolismo , Córtex Pré-Frontal/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neurônios/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética
18.
Geroscience ; 45(5): 2909-2926, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37326915

RESUMO

Alzheimer's disease (AD) exerts a tremendous socio-economic burden worldwide. Although reduced cerebral blood flow is an early and persistent symptom that precedes the loss of cognitive function in AD, the underlying molecular and cellular mechanisms remain unclear. The present study investigated whether capillary endothelial inward rectifier potassium 2 (Kir2.1) expression is reduced in TgF344-AD (AD) rats and contributes to neurovascular uncoupling and cognitive deficits in AD. Three- to fourteen-month-old AD rats expressing mutant human APP and PS1 and age-matched wild-type (WT) F344 rats were studied. AD rats exhibited higher amyloid beta (Aß) expression in the brain as early as 3 months of age and amyloid plaques by 4 months of age. Functional hyperemic responses induced by whisker stimulation were impaired at 4 months of age, which were exacerbated in 6-month- and 14-month-old AD rats. The expression of Kir2.1 protein was significantly lower in the brains of 6-month-old AD versus WT rats, and Kir2.1 coverage was lower in the cerebral microvasculature of AD than in WT rats. Aß1-42 reduced the Kir2.1 expression in cultured capillary endothelial cells. Cerebral parenchymal arterioles with attached capillaries exhibited a reduced vasodilator in response to 10 mM K+ applied to capillaries, and constricted less following administration of a Kir2.1 channel blocker, compared to WT vessels. These results indicate that capillary endothelial Kir2.1 expression is reduced and contributes to impaired functional hyperemia in AD rats at early ages, perhaps secondary to elevated Aß expression.


Assuntos
Doença de Alzheimer , Camundongos , Ratos , Humanos , Animais , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Capilares/metabolismo , Células Endoteliais , Camundongos Transgênicos , Ratos Endogâmicos F344
19.
Fluids Barriers CNS ; 20(1): 50, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353852

RESUMO

BACKGROUND: The functions and protein expressions of the blood-brain barrier are changed throughout brain development following birth. This study aimed to develop a method to isolate brain capillaries from a single frozen neonatal mouse brain and elucidate the enrichment of brain capillaries by quantitative proteomic analysis. We further compared the expression profile of proteins between neonatal and adult brain capillary fractions. METHODS: The brain capillary fraction was prepared by the optimized method from a single frozen mouse neonatal brain on postnatal day 7. The brain capillary fractions and brain lysates were digested by trypsin and analyzed by liquid chromatography-mass spectrometry for quantitative proteomics. RESULTS: By optimizing the isolation method, we observed brain capillaries in the fraction prepared from a single neonatal mouse brain (nBC fraction). A protein amount of 31.5 µg, which is enough for proteomic analysis, was recovered from the nBC fraction. By proteomics analysis, the brain capillary selective proteins, including Abcb1a/Mdr1, Slc2a1/Glut1, Claudin-5, and Pecam-1, were found to be concentrated > 13.4-fold more in nBC fractions than in whole brain lysates. The marker proteins for neurons and astrocytes were not concentrated in nBC fractions, while those of pericytes and microglia were concentrated. Compared to adult mouse brain capillary fractions (aBC fractions), the expressions of Abcb1a/Mdr1a, Abcc4/Mrp4, and Slc2a1/Glut1 were significantly lower in nBC fractions than in aBC fractions, whereas those of Slc1a4/Asct1, Slc1a5/Asct2, Slc7a1/Cat1, and Slc16a1/Mct1 were significantly higher. Amino acid transporters, Slc38a5/Snat5, showed the greatest nBC-to-aBC ratio among transporters (9.83-fold). Network analysis of proteins expressed differentially between nBC and aBC fractions revealed that the proteins with terms related to the extracellular matrix were enriched. CONCLUSIONS: We succeeded in isolating brain capillaries from a single frozen brain of a neonatal mouse at postnatal day 7. Proteomic analysis revealed the differential expression in brain capillaries between neonatal and adult mice. Specifically, amino acid transporters, including Slc1a5/Asct2 and Slc38a5/Snat5, were found to be induced in neonatal brain capillaries. The present isolation method will promote the study of the function and expression of the neonatal blood-brain barrier.


Assuntos
Capilares , Proteômica , Camundongos , Animais , Animais Recém-Nascidos , Transportador de Glucose Tipo 1/metabolismo , Capilares/metabolismo , Proteômica/métodos , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo
20.
ACS Appl Mater Interfaces ; 15(24): 28981-28992, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37289581

RESUMO

Brown adipose tissues (BATs) have been identified as a promising target of metabolism disorders. [18F]FDG-PET (FDG = fluorodeoxyglucose; PET = positron emission tomography) has been predominantly employed for BAT imaging, but its limitations drive the urgent need for novel functional probes combined with multimodal imaging approaches. It has been reported that polymer dots (Pdots) display rapid BAT imaging without additional cold stimulation. However, the mechanism by which Pdots image BAT remains unclear. Here, we made an intensive study of the imaging mechanism and found that Pdots can bind to triglyceride-rich lipoproteins (TRLs). By virtue of their high affinity to TRLs, Pdots selectively accumulate in capillary endothelial cells (ECs) in interscapular brown adipose tissues (iBATs). Compared to poly(styrene-co-maleic anhydride)cumene terminated (PSMAC)-Pdots with a short half-life and polyethylene glycol (PEG)-Pdots with low lipophilicity, naked-Pdots have good lipophilicity, with a half-life of about 30 min and up to 94% uptake in capillary ECs within 5 min, increasing rapidly after acute cold stimulation. These results suggested that the accumulation changes of Pdots in iBAT can reflect iBAT activity sensitively. Based on this mechanism, we further developed a strategy to detect iBAT activity and quantify the TRL uptake in vivo using multimodal Pdots.


Assuntos
Tecido Adiposo Marrom , Fluordesoxiglucose F18 , Tecido Adiposo Marrom/diagnóstico por imagem , Tecido Adiposo Marrom/metabolismo , Capilares/metabolismo , Células Endoteliais/metabolismo , Fluordesoxiglucose F18/metabolismo , Lipoproteínas/metabolismo , Imagem Multimodal , Polímeros/metabolismo , Tomografia por Emissão de Pósitrons , Triglicerídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...